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Abstract

The entropy generation due to heat transfer and friction has been determined in transient state for laminar natural

convection by solving numerically the mass, momentum and energy balance equations, using a control volume finite-

element method. The variations of the total entropy generation as function of time for Rayleigh number and irre-

versibility distribution ratio set at 103 6Ra6 105 and 10�4
6u6 10�1 were investigated. The evolution of the maximum

of entropy generation with the Rayleigh number is studied. The effect of the irreversibility distribution ratio on the

maximum entropy generation and the entropy generation in steady state are analyzed. The irreversibility maps for

Rayleigh number set at 103 6Ra6 105 and irreversibility distribution ratio u ¼ 10�4 are plotted.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Thermodynamic system submitted to thermal gradi-

ent, friction effects, diffusion, chemical reaction. . ., are
subject to energy losses, which induces entropy genera-

tion in the system. The optimal design criteria for ther-

modynamic systems can be achieved by analyzing

entropy generation in the systems. Entropy generation

has recently been the topic of great interest in fields such

as heat exchangers, turbomachinery, electronic cooling,

porous media and combustion. Many studies have been

published on entropy generation. Datta [1] investigated

the entropy generation in a confined laminar diffusion

flame. It has been proved that the major contribution to

the entropy generation is due to heat transfer within the

flame. Baytas [2,3] presented a numerical study on the

minimization of entropy generation in an inclined en-

closure [2] and inclined porous cavity [3]. The influ-

ence of Rayleigh number, Bejan number and inclination

angle, on entropy generation, are evaluated. It has been
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established that minimum entropy generation consider-

ably depends on the inclination angle of the enclosure.

Bejan [4] showed that the entropy generation for forced

convective heat transfer is due to temperature gradient

and viscous effect in the fluid. Demirel and Kahraman

[5] studied the entropy generation in a rectangular

packed duct with wall heat flux. It was found that the

irreversibility distribution is not continuous through the

wall and core regions. Sahim [6] analytically investigated

entropy generation in turbulent liquid flow through a

smooth duct subjected to constant wall temperature. It

was found that constant viscosity assumption may yield

a considerable amount of deviation on entropy genera-

tion. Entropy generation and Lyapunov instability at

the onset of turbulent convection were examinated by

Castillo and Hoover [7]. They showed that the two flow

morphologies at the same Rayleigh number have dif-

ferent rates of entropy generation and different Lyapu-

nov exponent. The harmonic flow produces entropy at

greater rate whereas the chaotic flow has a larger max-

imum Lyapunov exponent. Different research on local

entropy generation in heat exchangers are available in

the literature [8,9].

The numerical study about entropy generation in

transient state for natural convection has not yet been

encountered. The present paper reports a numerical
ghts reserved.
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Nomenclature

a thermal diffusivity (m2 s�1)

Be Bejan number

g acceleration due to gravity (m s�2)

k conductivity (Jm�1 s�1 K�1)

L cavity length (m)

p pressure (Nm�2)

P dimensionless pressure

Pr Prandtl number

Ra Rayleigh number
_SS entropy generation per unit volume

(Jm�3 s�1 K�1)

t time (s)

T temperature (K)

T0 bulk temperature (K), T0 ¼ ðTh þ TcÞ=2 (K)

DT temperature difference, DT ¼ Th � Tc (K)

# system volume

~vv velocity vector
~VV dimensionless velocity vector

u, v velocity components in x, y directions

(m s�1)

U , V dimensionless velocity, components in x, y
directions

x, y cartesian coordinates (m)

X , Y dimensionless Cartesian coordinates

Greek symbols

b coefficient of thermal expansion, (K�1)

h dimensionless temperature

l dynamic viscosity, (kgm�1 s�1)

m cinematic viscosity, (m2 s�1)

u irreversibility distribution ratio

s shear tensor, (Nm�2)

f dimensionless time

Subscripts

a dimensionless

c cold

f friction effect

h heat transfer/hot

l local

p steady state

T total

adiabatic wall

Th Tc
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study of entropy generation in transient state in a

vertical cavity submitted to an horizontal thermal gra-

dient. The evolution of entropy generation, and the

Bejan number in transient state for laminar natural

convection were studied . The effects of the Rayleigh

number and the irreversibility distribution ratio on the

entropy generation were examined. The local irrevers-

ibility maps in steady state as function of Rayleigh

number were given.
adiabatic wall

L

Fig. 1. Schematic view of 2D cavity.
2. Mathematical modeling

2.1. Flow and governing equations

Consider the flow of a Newtonian Boussinesq in-

compressible fluid enclosed in a differential heated cavity

as shown in Fig. 1. The set of dimensionless governing

equations in transient state are:

oU
oX

þ oV
oY

¼ 0 ð1Þ

oU
of

þ div~JJU ¼ � oP
oX

ð2Þ

oV
of

þ div~JJV ¼ � oP
oY

þ Ra � Pr � h ð3Þ
oh
of

þ div~JJh ¼ 0 ð4Þ

with

~JJU ¼ U~VV � Pr � grad��!
U ð5Þ

~JJV ¼ V ~VV � Pr � grad��!
V ð6Þ

~JJh ¼ h~VV � grad
��!

h ð7Þ

where the dimensionless variables are defined by:
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X ¼ x
L
; Y ¼ y

L
; U ¼ uL

a
; V ¼ vL

a
;

h ¼ T � T0
Th � Tc

; P ¼ pL2

qa2
; Ra ¼ bgDTL3

ma
;

f ¼ at
L2

; Pr ¼ m
a

ð8Þ
2.2. Boundary and initial conditions

The boundary conditions appropriate to laminar

flow within the differential heated cavity are:

U ¼ V ¼ 0 for all walls

h ¼ 0:5 on plane X ¼ 0

h ¼ �0:5 on plane X ¼ 1

oh
oY

¼ 0 on planes Y ¼ 1 and Y ¼ 0

The initial conditions are:

f ¼ 0

U ¼ V ¼ 0; P ¼ 0 and h ¼ 0:5� X for whole space
2.3. Entropy generation

The existence of a thermal gradient between the

vertical walls of the enclosure sets the fluid in a non-

equilibrium state which causes entropy generation in the

system. According to local thermodynamic equilibrium

with linear transport theory, the local entropy genera-

tion is given by [2,3]:

_SSl ¼
k
T 2
0

ð ~rrT Þ2 þ
��ss�ss : r~vv
T0

ð9Þ

In the case of two dimensional Cartesian system Eq. (9)

can be written as:

_SSl ¼
k
T 2
0

oT
ox

� �2
"

þ oT
oy

� �2
#
þ l
T0

2
ou
ox

� �2
"

þ 2
ov
ox

� �2

þ ou
oy

�
þ ov
ox

�2
#

ð10Þ

The local entropy generation can be made dimensionless

by using the dimensionless variables listed in Eq. (8):

_SSl;a ¼ _SSl;a;h þ _SSl;a;f ð11Þ

where:

_SSl;a;h ¼
oh
oX

� �2
"

þ oh
oY

� �2
#

ð12Þ
_SSl;a;f ¼ u 2
oU
oX

� �2
"

þ 2
oV
oY

� �2

þ oU
oY

�
þ oV
oX

�2
#

ð13Þ

u ¼ lT0
k

a
LðDT Þ

� �2

ð14Þ

The first term on the right-hand side of Eq. (11) shows

the local entropy generation due to heat transfer ( _SSl;a;h),
while the second term shows the local entropy genera-

tion due to fluid friction ( _SSl;a;f ). The dimensionless total

entropy generation is the integral over the system vol-

ume of the dimensionless local entropy generation:

_SST;a ¼
Z
#

_SSl;a d# ð15Þ

An alternative irreversibility distribution parameter

called Bejan number (Be) [5] is given in dimensionless

form as follows:

Be ¼
_SSl;a;h
_SSl;a

ð16Þ

When Be 	 1=2, the irreversibility due to heat transfer

dominates. For Be 
 1=2 the irreversibility due to vis-

cous effect dominates. For Be ¼ 1=2 heat transfer and

fluid friction entropy generation are equal. From the

known temperature and velocity fields at time f given by

solving Eqs. (1)–(4), the dimensionless local entropy

generation can be evaluated in each point of the domain

by Eq. (11). Using Eq. (15) the dimensionless total en-

tropy generation can be obtained. By varying f from 0 to

steady state, the transient evolution of dimensionless

total entropy generation and the Bejan number can be

determined.
3. Numerical procedure

A modified version of the control volume finite-ele-

ment method (CVFEM) of Saabas and Baliga [10] is

adapted to the standard staggered grid in which pressure

and velocity components are stored at different points.

The SIMPLER algorithm was applied to resolve the

pressure–velocity coupling in conjunction with an al-

ternating direction implicit (ADI) scheme for perform-

ing the time evolution. A shape function describing the

variation of the dependant variable / (¼U ; V or hÞ is

needed to calculate the flux across the control-volume

faces. We have followed Saabas and Baliga [10] in as-

suming linear and exponential variations respectively

when the dependant variable / is calculated in the dif-

fusive and in the convective terms of the conservation

equations. More details and discussions about CVFEM

are available in the works of Prakash [11], Hookey [12],

Elkaim et al. [13], Saabas and Baliga [10] and in many
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other works. The numerical code used here is described

and validated in details in Abbassi et al. [14].
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4. Results and discussions

In this investigation, the Prandtl number was fixed at

0.7. The Rayleigh number and the irreversibility distri-

bution ratio are in the ranges of 103 6Ra6 105 and

10�4
6u6 10�1. Figs. 2–4 illustrate the variations of the

dimensionless total entropy generation in the transient

state for different irreversibility distribution ratios u. It
can be concluded that the dimensionless total entropy
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Fig. 2. Dimensionless total entropy generation versus time for

Ra ¼ 103: (a) u ¼ 10�1, (b) u ¼ 10�2.
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Fig. 3. Dimensionless total entropy generation versus time for

Ra ¼ 104: (a) u ¼ 10�2, (b) u ¼ 10�3.
generation _SST;a has a maximum Maxð _SST;aÞ at the onset of
the transient state, then decreases to reach a constant

value in the steady state. This maximum is reached as

faster as the Rayleigh number is important. It can be

seen from Fig. 2 that for small Rayleigh numbers, the

total entropy generation tends towards a constant value

asymptotically, whereas for relatively important Ray-

leigh numbers, precisely greater then a critical Rayleigh

number Rac ¼ 5200, an oscillation of the entropy gen-

eration can be observed before reaching the steady state,

Figs. 3 and 4. As seen in Figs. 3 and 4, the amplitude and

the number of oscillations of the entropy generation are



ζ

T,aS&

0.0 0.1 0.2 0.3 0.4 0.5

0

100

200

300

400

500

a)

ζ

T,aS&

0.0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

b)

Fig. 4. Dimensionless total entropy generation versus time for

Ra ¼ 105: (a) u ¼ 10�3, (b) u ¼ 10�4.
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as important as the Rayleigh number increases. Fluc-

tuations of the total entropy generation at high Rayleigh

numbers indicate that the flow exhibits oscillatory be-

havior which depends on the boundary conditions. At

the very beginning of the transient state heat transfer is

mainly due to heat conduction. The isotherms are nearly

parallel to the active walls generating an horizontal

temperature gradient. The streamlines are those of a

single spiral with its center being at the center of the

cavity. As time proceeds the isotherms are gradually

deformed by convection generating a vertical tempera-

ture gradient while the horizontal temperature gradient
diminishes in the center of the cavity and becomes lo-

cally negative which causes an elongation of the central

streamline and the development of a second spiral in the

core, practically at the dimensionless time f ¼ 5� 10�2,

just before the entropy generation reaches its first min-

imum. This transition from a single to a double config-

uration may induce generation of internal waves in the

velocity and temperature fields who can be at the origin

of the oscillations of the whole cavity and consequently

of the entropy generation. The current result is consis-

tent with the findings of Ivey [15], Schladow [16] and

Patterson and Armfield [17] who showed the existence of

transient oscillations in enclosures consisting of two

isothermal vertical walls and two adiabatic horizontal

walls. Ivey [15] claimed the transient oscillations oc-

curred because of an internal hydraulic jump with an

increase of the horizontal intrusion layers. These oscil-

lations were stated to disappear as the interior is set in

motion and stratifies in temperature, increasing the

thickness of the intrusion and flooding the hydraulic

jump. Transient oscillations consisting of two distinct

boundary layer instabilities and a whole cavity oscilla-

tions were observed by Schladow [16]. The whole cavity

oscillations were attributed to the horizontal pressure

gradient established by changes in the intrusion tem-

perature field. Similar observations are given by Patt-

erson and Armfield [17]. The two boundary layer

oscillations were attributed to travelling wave instability

on the boundary layer induced first by the leading edge

effect of the vertical boundary layer and second by the

impact of the horizontal intrusion from the opposing

vertical wall with the boundary layer. The whole cavity

oscillations are said to be caused by the splitting of the

horizontal intrusion as it impacts the opposite wall.

From a thermodynamics view point, the asymptotic

behavior of the total entropy generation with time at

small Rayleigh numbers shows that the system is in the

linear branch of the thermodynamics of irreversible

processes where the famous reciprocity relations of

Onsager are applicable. In fact for small Rayleigh

number the steady state is sufficiently close the equilib-

rium state, therefore the system returns directly towards

the steady state and the Prigogine�s theorem of mini-

mum entropy production is verified. For higher Ray-

leigh numbers ðRa > RacÞ the steady state is relatively

far from the equilibrium state , then a rotation around

the steady state is possible, and the system is in the case

of a spiral approach towards this state corresponding to

an oscillation of the total entropy generation. Conse-

quently, the system evolves in the non-linear branch of

irreversible phenomena. Since the thermal gradient gives

birth to a convection regime, new coupling effects are

introduced. These coupling effects are not considered by

the reciprocity relations of Onsager due to the fact that

convection is negligible for small Rayleigh numbers

(linear branch) and the flow is dominated by conduction
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only. The transition from the linear thermodynamics

domain to the non-linear thermodynamics domain is

made at a critical Rayleigh number Rac ¼ 5200. As seen

in Figs. 5–7 the initial value of the Bejan number (Be) is
Be ¼ 1. This is due to zero initial condition of velocity

vector, which induces that the entropy generation due to

viscous effects is zero and therefore the total entropy

generation is reduced to the entropy generation due to

heat transfer ( _SSl;a ¼ _SSl;a;h). Figs. 5–7 show that the Bejan

number decreases (rapidly for higher Ra) at the very

beginning of the transient state and reaches a minimum

value at practically the same time that entropy genera-

tion reaches its maximum. This is caused by the onset of

the convection regime, the flow in the hot and cold

viscous layers accelerates (rapidly for higher Ra) at the
onset of the transient state and the entropy generation

due to fluid friction begins to play a significant role

( _SSl;a;f > 0). As can be seen in Figs. 6 and 7 the transient

oscillatory behavior of the Bejan number at higher

Rayleigh numbers is due to the oscillations of the en-

tropy generation. In the steady state Figs. 5–7 show that

the domination of one of the two effects (thermal or

viscous) on total entropy generation is highly depends

on the Rayleigh number and the irreversibility distri-

bution ratio. For a given value of the irreversibility

distribution ratio, the Bejan number decreases with in-

creasing Rayleigh number therefore viscous effects irre-

versibility becomes significant and begins to dominate

heat transfer irreversibility. Graphs of the maximum of

the total entropy generation Maxð _SST;aÞ as function of

Rayleigh number at different irreversibility distribution

ratio u are shown in Fig. 8. At low irreversibility dis-

tribution ratios (as low as u6 10�4) Maxð _SST;aÞ takes on
small values even at high Rayleigh numbers. However,
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(a)
0.0

ζ
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 7. Variation of Bejan number versus time for Ra ¼ 105: (a)
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for u P 10�3, Maxð _SST;aÞ increases rapidly. Similar ob-

servations can be made about the evolution of the total

entropy generation _SST;a;p as a function of the Rayleigh

number during the steady state as seen in Fig. 9. At low

value of Rayleigh numbers (Ra ¼ 103), the difference

between the maximum of the total entropy generation

Maxð _SST;aÞ and the entropy generation in steady state
_SST;a;p (denoted the gap (G) in Fig. 10(a)), has low value.

This is because the disruption introduced into the system

is small during the transient state at low Rayleigh

numbers. Fig. 10(b) and (c), show that the gap consid-

erably increases with increasing Rayleigh number, at

high Rayleigh numbers, the size of the gap (G) is large

even for small irreversibility distribution ratios. It is
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important to note the linear behavior of the gap as

function of the irreversibility distribution ratio u for

Ra > Rac. The local heat transfer irreversibility maps are

shown in Fig. 11. As seen in Fig. 11(a), for Ra ¼ 103

entropy generation covers the whole domain except the

upper and lower corners for the heated and cooled walls,

respectively. Fig. 11(b) and (c), show that as the Ray-
leigh number increases , the local entropy generation is

increasingly confined to the neighborhood of the active

walls of the enclosure. This is due to heat transfer irre-

versibility, because large heat transfer is confined to

these locations. Fig. 12 show the local entropy genera-

tion maps due to heat transfer and fluid friction. It can

be concluded that entropy generation covers the whole
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domain for Ra ¼ 103, Fig. 12(a). This covered domain

reduces with increasing Rayleigh number, Fig. 12(b) and

(c). For higher Rayleigh number, Fig. 12(c) shows that
the entropy generation is localized along the walls only.

This is due to the boundary layer regime at higher

Rayleigh numbers.
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5. Conclusion

Entropy generation in transient state for natural

convection was calculated numerically by using a con-

trol volume finite-element method. The influence of the

Rayleigh number and the irreversibility distribution

ratio on the total entropy generation and the Bejan
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number are evaluated. Results show that the total en-

tropy generation has a maximum value at the onset of

the transient state, which increases with the Rayleigh

number and the irreversibility distribution ratio. It was

found that entropy generation asymptotically tends to-

wards a constant value at low Rayleigh numbers,

whereas an oscillation of the entropy generation was

observed for higher Rayleigh numbers, before reaching

the steady state. Results show that the flow exhibits

oscillatory behavior at high Rayleigh numbers. It was

found that beyond a critical value of the Rayleigh

number, the Prigogine�s theorem of minimum entropy

production is not verified and the system is out of the

linear branch of irreversible phenomena. Results show

that the Bejan number takes a minimum value in the

beginning of the transient state which decreases with

increasing Rayleigh number and irreversibility distribu-

tion ratio. Results show that for increasing Rayleigh

number viscous effects irreversibility begins to dominate

heat transfer irreversibility. In the steady state, entropy

generation is spread over the whole domain at small

Rayleigh numbers, but is confined to the neighborhood

of the active walls at high Rayleigh numbers.
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